



Game Theory Course: Jackson, Leyton-Brown & Shoham

Game Theory Course: Jackson, Leyton-Brown & Shoham

Bayesian Nema-Jawa Bayesian Nema

- The future is uncertain, we are often motivated by what happens today
- Tradeoffs of today and the future are important in how I will behave today
- Will people punish me if I misbehave today?
  - Is it in their interest?
  - Do I care?



- Stage game: (N, A, u)
- Discount factors:  $\beta_1, \ldots, \beta_n$ ,  $\beta_i \in [0, 1]$
- Assume a common discount factor for now:  $\beta_i = \beta$  for all i
- Payoff from a play of actions  $a^1, \ldots, a^t, \ldots$ :

$$\sum_t \beta_i^t u_i(a^t)$$

#### Histories



• Histories of length t:  $H^t = \{h^t : h^t = (a^1, \dots, a^t) \in A^t\}$ 

• All finite histories:  $H = \cup_t H^t$ 

• A strategy:  $s_i: H \to \Delta(A_i)$ 

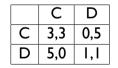


• 
$$A_i = \{C, D\}$$

• A history for three periods: (C, C), (C, D), (D, D)

• A strategy for period 4 would specify what a player would do after seeing (C,C),(C,D),(D,D) played in the first three periods...

# Subgame Perfection


• Profile of strategies that are Nash in every subgame

• So, a Nash equilibrium following every possible history

• Repeatedly playing a Nash equilibrium of the stage game is always a subgame perfect equilibrium of the repeated game (Stop and check this!)



- Cooperate as long as everyone has in the past
- Both players defect forever after if anyone ever deviates: Grim Trigger





• Let's check that nobody wants to deviate if everyone has cooperated in the past:

• Cooperate: 
$$3 + \beta 3 + \beta^2 3 + \beta^3 3... = \frac{3}{1-\beta}$$

• Defect:  $5 + \beta 1 + \beta^2 1 + \beta^3 1 \dots = 5 + \beta \frac{1}{1-\beta}$ 

|   | С   | D   |
|---|-----|-----|
| С | 3,3 | 0,5 |
| D | 5,0 | ١,١ |



• Let's check that nobody wants to deviate if everyone has cooperated in the past:

• Cooperate: 
$$3 + \beta 3 + \beta^2 3 + \beta^3 3... = \frac{3}{1-\beta}$$

• **Defect:** 
$$5 + \beta 1 + \beta^2 1 + \beta^3 1 \dots = 5 + \beta \frac{1}{1-\beta}$$

- Difference:  $-2+\beta 2+\beta^2 2+\beta^3 2...=\beta \frac{2}{1-\beta}-2$
- Difference is nonnegative if  $\beta \frac{2}{1-\beta}-2 \geq 0$  or  $\beta \geq (1-\beta),$  so  $\beta \geq 1/2$
- Need to care about tomorrow at least half as much as today!





• What if we make defection more attractive:

|   | С    | D    |
|---|------|------|
| С | 3,3  | 0,10 |
| D | 10,0 | ١,١  |

• Let's check that nobody wants to deviate if everyone has cooperated in the past:

• Cooperate: 
$$3 + \beta 3 + \beta^2 3 + \beta^3 3... = \frac{3}{1-\beta}$$

- **Defect:**  $10 + \beta 1 + \beta^2 1 + \beta^3 1... = 10 + \beta \frac{1}{1-\beta}$
- Difference:  $-7 + \beta 2 + \beta^2 2 + \beta^3 2... = \beta \frac{2}{1-\beta} 7$
- Difference is nonnegative if  $\beta\frac{2}{1-\beta}-7\geq 0 \text{ or } 2\beta\geq 7(1-\beta),$  so  $\beta\geq 7/9$
- Need to care about tomorrow at least 7/9 as much as today!





- Basic logic:
  - · Play something with relatively high payoffs, and if anyone deviates
  - Punish by resorting to something that
    - has lower payoffs (at least for that player)
    - and is credible: it is an equilibrium in the subgame.